

Basics of energy conversation cycles

Heat Engines and Efficiencies

> The objective is to build devices which receive heat and produce work (like an aircraft engine or a car engine) or receive work and produce heat (like an air conditioner) in a <u>sustained manner</u>.

> All operations need to be cyclic. The cycle comprises of a set of processes during which one of the properties is kept constant (V,p,T etc.)

>A minimum of 3 such processes are required to construct a cycle.

➢All processes need not have work interactions (eg: isochoric)

➤All processes need not involve heat interactions either (eg: adiabatic process).

➤A cycle will consist of processes: involving some positive work interactions and some negative.

➢If sum of +ve interactions is > -ve interactions the cycle will produce work

 \succ If it is the other way, it will need work to operate.

>On the same lines some processes may have +ve and some -ve heat interactions.

≻Commonsense tells us that to return to the same point after going round we need at one path of opposite direction.

>I law <u>does not forbid</u> all heat interactions being +ve nor all work interactions being -ve.

➢ But, we know that you can't construct a cycle with all +ve or

> All -ve Q's nor with all +ve or all -ve W's

➤ Any cycle you can construct will have some processes with

 \triangleright Q +ve some with -ve.

- >Let Q_1, Q_3, Q_5 be +ve heat interactions (Heat supplied)
- $> Q_2, Q_4, Q_6 \dots$ be -ve heat interactions (heat rejected)

≻From the first law we have

$$> Q_1 + Q_3 + Q_5 \dots = Net work delivered (W_{net})$$

$$\succ \Sigma \mathbf{Q}_{+\mathrm{ve}} - \Sigma \mathbf{Q}_{-\mathrm{ve}} = \mathbf{W}_{\mathrm{net}}$$

> The efficiency of the cycle is defined as $\eta = W_{net} / \Sigma Q_{+ve}$

> Philosophy \rightarrow What we have achieved \div what we have spent to achieve it

Otto Cycle

Consider the OTTO Cycle (on which your car engine works)

It consists of two isochores and two adiabatics

- There is no heat interaction during 1-2 and 3-4
- Heat is added during constant volume heating (2-3) Q2-3= cv (T3-T2)
- Heat is rejected during constant volume cooling (4-1) Q4-1= cv (T1-T4)
- Which will be negative because T4 >T1

Otto Cycle (Contd...)

- \blacktriangleright Work done = cv (T3-T2) + cv (T1-T4)
- > The efficiency = [cv(T3-T2)+cv(T1-T4)]/[cv(T3-T2)]
 - = [(T3-T2) + (T1-T4)]/[(T3-T2)]

=1 - [(T4-T1) / (T3-T2)]

Carnot Cycle

Consider a Carnot cycle - against which all other cycles are compared It consists of two isotherms and two adiabatics

- Process 4-1 is heat addition because v4 < v1
- Process 2-3 is heat rejection because v3 < v2

Carnot Cycle (contd..)

Process	s Work	Heat	
1-2	(p1v1-p2v2)/(g-1)	0	
2-3	p2v2 ln (v3/v2)	p2v2 ln (v3/v2)	
3-4	(p3v3-p4v4)/(g-1)	0	
4-1	p4v4 ln (v1/v4)	p4v4 ln (v1/v4)	
Sum (p1v1-p2v2 + p3v3-p4v4)/(g-1)			
+ RT2	ln (v3/v2)	RT2 ln (v3/v2))
+ RT11	n (v1/v4)	+ RT1ln (v1/v4)	
But, $p1v1 = p4v4$ and $p2v2 = p3v3$			
Therefore the first term will be 0			
!!We reconfirm that I law works!!			

Carnot Cycle (contd..)

We will show that (v2/v3) = (v1/v4)1 and 2 lie on an adiabatic so do 3 and 4 p1v1g = p2v2g p4v4g = p3v3gDivide one by the other (p1v1g / p4v4g) = (p2v2g / p3v3g) (A) (p1/p4) (v1g / v4g) = (p2/p3) (v2g / v3g)

But (p1/p4) = (v4/v1) because 1 and 4 are on the same isotherm Similarly (p2/p3) = (v3/v2) because 2 and 3 are on the same isotherm

Carnot Cycle (contd..)

Therefore A becomes (v1 / v4)g-1 = (v2/v3)g-1which means (v2/v3) = (v1/v4)Work done in Carnot cycle = RT1ln $(v1/v4) + RT2 \ln (v3/v2)$ = RT1ln $(v1/v4) - RT2 \ln (v2/v3)$ =R ln (v1/v4) (T1- T2) Heat supplied = R ln (v1/v4) T1 The efficiency = (T1-T2)/T1In all the cycles it also follows that Work done=Heat supplied - heat rejected

Carnot Cycle (contd..) Carnot engine has one Q +ve process and one Q -ve

process. This engine has a single heat source at T_1 and a single sink at T_2 .

If Q + ve > Q -ve; W will be +ve It is a heat engine

Carnot Cycle (contd..)

It will turn out that Carnot efficiency of (T1- T2)/T1 is the best we can get for any cycle operating between two fixed temperatures.

Carnot Cycle (contd..)

Q + ve < Q -ve W will be - ve It is not a heat engine

Efficiency is defined only for a work producing heat engine not a work consuming cycle

Carnot Cycle (contd..)

Note: We can't draw such a diagram for an Otto cycle

because there is no single temperature at which heat interactions

occur