

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR

Mechanical Engineering (2019-20)

Title of Course: Engineering Materials Course Code: MEC406 L-T Scheme: 3-0

Course Credits: 3

Lesson Plan

Sl.No.	Syllabus	Contact Hrs.
1.	Introduction: Material Science-its importance in engineering; Classification of	1
	Materials-metals, polymers, ceramics, composites; Advanced	
	materials-semiconductors, smart materials, nano-materials; Review atomic	
	structure, Atomic bonding in solids—bonding forces and energies;	
2	ionic/covalent/metallic bonding.	6
۷.	<u>Crystal Structure:</u> Fundamental concepts; Unit cells; seven crystal systems; single	0
	crystal, polycrystalline and non-crystalline materials; Metallic crystal	
	structures—FCC, atomic packing factor, BCC & HCP structures, crystallographic	
	Crystal imperfection	
3.	Imperfections in Metals: Point defects due to vacancy & impurities, alloys, solid	2
	solutions; Dislocations—linear defects, interfacial defects, grain	
	boundaries.	
4.	<u>Phase Diagrams:</u> Definition and basic concepts; solubility limit; Phase	3
	equilibria, one-component phase diagram, binary phase diagram, interpretation	
5	of phase diagrams.	2
5.	properties and uses of plain carbon steel	Z
6.	Classification of Metals and Alloys- compositions, general properties and uses:	6
	6.1 Ferrous alloys: Classification -low carbon steels, medium carbon steels, high	
	carbon steels, stainless steels, alloy steels, tool and die steel, cast irons.	
	6.2 Non-ferrous alloys: Copper & Copper alloys; Aluminum alloys; Zinc	
	alloys; Nickel alloys; Lead & Tin alloys;	
7.	Mechanical Properties of Materials: Elastic properties of materials-tensile and	6
	compressive stress and strain, stress-strain behaviour, modulus of elasticity (Young's	
	modulus), yield strength, tensile strength, plastic deformation, true stress and strain;	
	Ductility; Resilience; Toughness, impact tests; Hardness- Brinell, Rockwell and	
	Vickers hardness and their testing procedures,	
	correlation between hardness and tensile strength; Fatigue strength; Effect of	
Q	temperature on tensile strength & impact properties, creep failure.	1
0.	Heat Ireatment: Definition and purposes; Heat treatment processes for	4
	steels—Hardening, structural change during heating and cooling, factors affecting	
	hardening; Tempering; Austempering; Normalizing; Annealing—full annealing,	
	spheroidising annealing, stress–relieving, recrystallisation annealing; Precipitation or	
	Age Hardening of non-ferrous alloys.	

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR

गनम्	<u>Miechanical Engineering (2019-20)</u>	
9.	Polymers & Elastomers: Definition; How polymers are made- polymerization;	2
	Polymer molecular structures; Thermoplastics & Thermosets; Special characteristics	
	like low sp. gravity, optical, electrical & thermal property, decorative color, easy	
	formability, low corrosion etc; Uses of	
	polymers and elastomers.	
10.	<u>Ceramic Materials</u> : What is ceramics; common ceramic materials and their	2
	characteristics; How ceramics are made—sintering and vitrification process;	
	Ceramic structures; Properties and applications.	
11.	Introduction to non-destructive testing (NDT), Introduction to corrosion, Introduction to various standards used in industry for testing.	2

Text Book:

- 1. Donald R Askeland and Pradeep, P.Phule (2006), The Science
- 2. Engineering of Materials for Science and Engineering, 5th edition
- 3. Materials Science, R.S. Khurmi and Sedha

References

1. Materials Science and Engineering by W.D. Callister and adapted by

R.Balasubramaniam, Willey India, 2010 Ed.

2. Engineering Materials: properties and selection by Budinski&Budinski,9thEd.,Prentice HallIndia

3. Engineering Materials and Metallurgy byR.Srinivasan, 2ndEd.,TataMcGrawHill.

4. Materials & Processes in Manufacturing by E. P. Degarmo and adapted by Black & Kosher, 10thEd., Wiley India.

5. Materials Science and Engineering by V. Raghavan, 5thEd., Prentice HallIndia.